
The medallion architecture is a design pattern for data lakehouses that helps
organizations effectively manage, and analyze data at scale. A structured yet
flexible arrangement of the data layers evolves to meet changing requirements
and optimizes performance. However, some best practices must be followed at
each step of this multi-layered approach:

The Medallion Architecture offers a structured, streamlined, and efficient way to
manage data. With the right best practices in place, this framework can be a
game-changer for any organization looking to harness the power of their data.

Contact our experts to implement best practices for
Data Engineering, DataOps, and Data Management across all your initiatives.

Best practices for

using medallion architecture

Allow seamless push-based data upload from source
systems to internal storage with whitelisted IP addresses

Enable business users to upload data directly to a single
internal storage location

Use storage-agnostic connectors for pulling data from
various databases

data management

Contact us

1. Data ingestion and extraction

Enforce schema evolution, track data lineage, and
maintain clear documentation for data processing,
transformation, and governance processes across layers

Avoid storing PII in any layer, encrypt sensitive data, and
implement granular access controls to ensure
end-to-end security

3. Data management and security

2. Data storage

Store raw data in blob storage with pre-determined
retention periods based on business needs

Apply consistent naming conventions and coding norms
for database objects

Add audit parameters to Bronze layer tables and ensure
schema adherence to the source

Transform data in the Bronze layer to the Silver layer by
standardizing formats, removing duplicates, and documenting
transformation logic with important assumptions

Choose appropriate star or snowflake schemas for
Gold layer tables based on business or project needs.

Leverage dashboards with off-the-shelf tools for quick
data consumption and analysis. Refresh data occasionally
to optimize cost and computation time

Optimize query performance with techniques like
partitioning, indexing, and caching. with auditing tools

4. Data consumption and monitoring

https://www.sigmoid.com/data-engineering/
https://www.sigmoid.com/data-devops/
https://www.sigmoid.com/blogs/data-mesh-and-data-fabric-the-rise-of-new-data-management-approaches/
https://www.sigmoid.com/contact-us/

